Search results for "Peptide nucleic acid"
showing 7 items of 7 documents
A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization
2009
We describe a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Förster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction by FRET measure. As a proof of concept we analyzed two alternative splicing events originating from lymphocyte antigen 6 (LY6) complex, locus G5B (LY6G5B) pre-mRNA. These are characterized by the removal of the first intron (Fully Spliced Isoform, FSI) or by retention of suc…
Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids
2022
The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications. Halloysite nanotubes (HNTs) are emerging materials in drug delivery applications both for their ability to penetrate cell membranes and for enhancing the solubility of drugs in biological media. Herein, we report the first example of the use of a nanocarrier based on halloysite labelled with fluorescent switchable halochromic oxazine molecules, to deliv…
Distribution of Interstitial Telomeric Sequences in Primates and the Pygmy Tree Shrew (Scandentia).
2017
It has been hypothesized that interstitial telomeric sequences (ITSs), i.e., repeated telomeric DNA sequences found at intrachromosomal sites in many vertebrates, could be correlated to chromosomal rearrangements and plasticity. To test this hypothesis, we hybridized a telomeric PNA probe through FISH on representative species of 2 primate infraorders, Strepsirrhini (<i>Lemur catta, Otolemur garnettii, Nycticebus coucang</i>) and Catarrhini (<i>Erythrocebus patas, Cercopithecus petaurista, Chlorocebus aethiops, Colobus guereza</i>), as well as on 1 species of the order Scandentia, <i>Tupaia minor</i>, used as an outgroup for primates in phylogenetic recon…
Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development
2019
Abstract The analogs of DNA are unique biomedical tools that are broadly utilized to develop different types of biosensors. Peptide nucleic acids (PNA) are an individual and notable class of nucleic acid analogs due to their unique, novel physicochemical and biochemical characteristics, stability and resistance to nuclease and protease enzymes, significant interactions with complementary strands and remarkable hybridization attributes. Therefore, they are employed in the preparation and fabrication of various types of functional biosensors. In other words, immobilization of PNA as an appropriate diagnostic probe on the surface of electrochemical and optical converters lead to the fabricatio…
Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology.
2005
It is known that DNA is a well-characterized intracellular target but its size and sequential characteristics make it an elusive target for selective drug action. Binding of low molecular weight ligands to DNA causes a variety of significant biological responses. In this context the main consideration is given to recent developments in DNA sequence selective binding agents bearing conjugated effectors because of their potential application in treatment of cancers, in diagnosis as well as in molecular biology. In the present review recent results about analogues of netropsins, distamycin A and of some lexitropsins and combilexins or related hybrid molecules with sequence reading, intercalati…
A practical approach to FRET-based PNA fluorescence in situ hybridization.
2010
Abstract Given the demand for improved methods for detecting and characterizing RNA variants in situ, we developed a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Forster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction as FRET efficiency measure. The FRET-based PNA fluorescence in situ hybridization (FP-FISH) method offers a conceptually new approach for characterizing at the subcellular …
Porphyrin-Based Design of Bioinspired Multitarget Quadruplex Ligands
2014
Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanc…